56 research outputs found

    Spring molybdenum enrichment in scallop shells: a potential tracer of diatom productivity in temperate coastal environments (Brittany, NW France)

    Get PDF
    Skeletal molybdenum/calcium ([Mo]/[Ca])<sub>shell</sub> ratios were examined in shells of the Great Scallop <i>Pecten maximus</i> collected in temperate coastal environments of Western Europe (42 to 49&deg; N). These ratios were determined by quantitative LA-ICP-MS analyses of daily striae taken every third day (i.e. a temporal resolution of 3 days) in 36 flat valves (2-years old; 3 shells/year). Variations of ([Mo]/[Ca])<sub>shell</sub> ratios were significant and reproducible for scallops from the same population, from different years (1998–2004) and temperate coastal locations (NW France). The [Mo]/[Ca])<sub>shell</sub> ratios exhibit typical profiles characterized by a background content, below the detection limit for this method (&lt;0.003 &mu;mol/mol) for most of the shell growth period, which is punctuated by a significant transient enrichment (0.031–2.1 &mu;mol/mol) mainly occurring from May to June. The Bay of Brest (France) was investigated in particular because of its long term observations on scallop communities, environmental variables, and high resolution analyses of dissolved Mo in bottom seawater in 2000. In 2000, dissolved Mo exhibited a significant increase in concentration just preceding the maximum ([Mo]/[Ca])<sub>shell</sub> ratio. Both the intense monitoring survey in 2000 and over the 7-year period indicates that the ([Mo]/[Ca])<sub>shell</sub> maximum is directly influenced by spring changes of environmental conditions at the sediment water interface (SWI), occurring subsequent to the intense and periodic spring bloom. Spring maxima of ([Mo]/[Ca])<sub>shell</sub> ratios are closely correlated to the extent of silicic acid and nitrate depletion in seawater between winter and late spring (<i>r</i><sup>2</sup>=0.878 and 0.780, <i>p</i><0.05, <i>n</i>=6) that reflects diatom uptake and productivity in the Bay of Brest. The Mo inputs in bottom waters and subsequent shell enrichment are thus suggested to be directly or indirectly influenced by such biogenic material input at the SWI. The [Mo]/[Ca])<sub>shell</sub> records thus reveal unexpected biogeochemical cycles of Mo influenced by coastal spring productivity, faithfully recorded in scallop shells

    Specificity and origin of the stability of the sr isotopic ratio in champagne wines

    Get PDF
    The 87Sr/86Sr ratio of 39 Champagnes from six different brands, originating from the whole “Appellation d’Origine ContrĂŽlĂ©e” (AOC) Champagne was analyzed to establish a possible relation with the geographical origin. Musts (i.e., grape juice) and base wines were also analyzed to study the evolution of the Sr isotopic ratio during the elaboration process of sparkling wine. The results demonstrate that there is a very homogeneous Sr isotopic ratio (87 Sr/86 Sr = 0.70812, n = 37) and a narrow span of variability (2? = 0.00007, n = 37). Moreover, the Sr concentrations in Champagnes have also low variability, which can be in part explained by the homogeneity of the bedrock in the AOC Champagne. Measurements of the87 Sr/86 Sr ratio from musts and base wines show that blending during Champagne production plays a major role in the limited variability observed. Further, the87 Sr/86 Sr of the musts were closely linked to the87 Sr/86 Sr ratio of the vineyard soil. It appears that the87 Sr/86 Sr of the product does not change during the elaboration process, but its variability decreases throughout the process due to blending. Both the homogeneity of the soil composition in the Champagne AOC and the blending process during the wine making process with several blending steps at different stages account for the unique and stable Sr isotopic signature of the Champagne wines.Centre de Spectrometrie de Masse pour les Sciences de la RĂ©activitĂ© et de SpĂ©ciatio

    Inorganic Mass Spectrometry

    Get PDF
    To establish a method for sensitive, accurate, and precise determination of Se in real samples, isotope dilution analysis using high-power nitrogen microwave-induced plasma mass spectrometry (N 2 MIP-IDMS) was conducted. In this study, freeze-dried human blood serum (Standard Reference Material, NIES No. 4) provided by NIES (National Institute for Environmental Studies) was used as a real sample. The measured isotopes of Se were 78 Se and 80 Se which are the major isotopes of Se. The appropriate amount of a Se spike solution was theoretically calculated by using an error multiplication factor (F) and was confirmed experimentally for the isotope dilution analysis. The mass discrimination effect was corrected for by using a standard Se solution for the measurement of Se isotope ratios in the spiked sample. However, the sensitivity for the detection of Se was not so good and the precision of the determination was not improved (2-3%) by N 2 MIP-IDMS with use of the conventional nebulizer. Therefore, a hydride generation system was connected to N 2 MIP-IDMS as a sample introduction system (HG-N 2 MIP-IDMS) in order to establish a more sensitive detection and a more precise determination of Se. A detection limit (3σ) of 10 pg mL -1 could be achieved, and the RSD was less than 1% at the concentration level of 5.0-10.0 ng mL -1 by HG-N 2 MIP-IDMS. The analytical results were found to be in a good agreement with those obtained by the standard addition method using conventional Ar ICPMS. It is well-known that Se is an essential element for all mammals. Se deficiency leads to deficiency syndromes, for example, Keshan disease, which is known for cardiac insufficiency that occurred in children and pregnant women in China. Problems also occur if the concentration of Se is too high; for example, gastroenteric disorders, dermatitis, and neurotic disorders are caused by excessive intake of Se. Moreover, it is well-known that the range of permissive intake amounts of Se is very narrow for human beings. Therefore, it is restricted as a toxic element in environmental standards. There are several sources of environmental Se pollution: the processes of Se refinement and the production processes of Se-containing products. For these reasons, the accurate and precise determination of trace levels of Se in environmental and biological samples is required, and studies of Se determination have been reported by several groups. [1][2][3][4][5][6][7][8][9][10][11] Because Ar ICPMS can measure multiple elements at a concentration range from ng mL -1 to fg mL -1 , it has widespread use in the determination of trace elements in various samples. 12-25 However

    Micro- and macro-scale investigation of fractionation and matrix effects in LA-ICP-MS at 1064 nm and 266 nm on glassy materials.

    No full text
    Fundamental processes taking place in UV and IR laser ablation and their significance for LA-ICP-MS measurements were investigated with synthetic glassy materials. LA-ICP-MS experiments were conducted on several vitreous and crystallized matrices with different composition using two NdYAG laser ablation systems operating at 1064 nm and 266 nm. Macro-scale effects of the laser factors and matrix properties were evaluated with ICP-MS detection. In-situ investigation of the laser ablation process was carried out at the micro-scale to assess physical and chemical transformations of the original material, based on electron probe microanalysis of ablation products collected on filters and laser impacts. Fragments and beads in the 1–10 ”m range enriched in refractory elements (Ca, Al) were characteristic of IR laser ablation, whereas sub-microscopic particles with similar composition to the original matrix were found for UV laser ablation. LA-ICP-MS response factors for matrix and minor elements appeared to be dependent on both the chemical composition and structure of the matrix (up to 30% and 60% for the UV and IR laser, respectively) and were also different for the two lasers by a factor 10. The use of La, a refractory matrix element, as an internal standard could compensate for differences in the ablation yield and thus limit matrix effects. However, fractionation effects were observed for the IR laser and also, to a lesser extent, with the UV one for volatile elements (e.g., Pb, As, B, Cs). Elemental fractionation effects were correlated with the oxide melting point of the elements as the LA-ICP-MS response factors for the IR laser normalized by the UV ones showed a linear relation with this parameter. At the micro-scale, the samples underwent physical and chemical differentiation that could be explained in terms of fusion, vaporization and fragmentation, resulting in the recombination of the analytes in the ablation products

    Real time alteration of a nuclear waste glass and remobilization of lanthanide into an interphase.

    No full text
    The development of predictive models for the long term evolution of nuclear waste glass requires the complete knowledge of the glass dissolution at the laboratory scale. A new approach was developed to determine the initial reaction during the first steps of experience, a new concept was developed, based on the combination of dynamic leaching test and the characterization of the altered materials. With this experimental set-up it is possible to follow in real time the glass alteration process at a fine temporal scale. The results put in evidence a singular behaviour of the lanthanide, shown by a concentration peak of La, Nd and Ce after 2 h and a quick decrease of their concentration measured on line in the solution during the leaching test. This fact is directly linked to the development of an interphase (altered layer which differs from the initial solid by its texture, structure and chemical composition) at the interface of the glass surface and the leaching solution. This work is an attempt to integrate the formation of the alteration products (here the interphase) during leaching into the dissolution mechanisms of a nuclear waste glass. A model is proposed and discussed

    Determination of palladium, platinum and rhodium concentrations in urban road sediments by laser ablation-ICP-MS.

    No full text
    The introduction of catalytic converter technology to cars has alleviated gaseous exhaust emissions but in turn has resulted in emissions of the three platinum group metals (PGMs), Pd, Pt and Rh, contained in the automobile catalyst. The environmental effects of PGMs are still largely unknown and their accurate determination is particularly difficult because concentrations are at trace levels. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a direct trace element measurement technique and can be used for the rapid characterization of metals in solid environmental matrices. Here, the capability of LA-ICP-MS for the direct quantitative determination of PGMs in road sediments was assessed. Two Nd:YAG laser systems operating at 266 and 1064 nm, respectively, were coupled to an ICP-MS. Uncontaminated road sediments were spiked with PGMs, both as solution and as solid certified reference material, and used to assess the analytical performance of the technique and to calibrate the instrument. Interferences due to the formation of molecular ions and double charged ions were investigated. The LA-ICP-MS was then used to determine the concentration of PGMs in a recent urban road sediment and the results were compared with high resolution-ICP-MS measurements after microwave sample digestion with Aqua Regia. The LA-ICP-MS allows the quantitative analysis of Pd, Pt, and Rh in road sediments at sub microgram per gram levels with a relative standard deviation of 10% and with estimated detection limits in the lower nanogram per gram range. Good agreement between LA-ICP-MS and HR-ICP-MS analysis could be obtained for Pt and Rh (<3% R.S.D. at ca. 100 ng g−1) whereas the determination of Pd remains subject to interferences
    • 

    corecore